The Four Color Theorem was first proved by Appel and Haken in 1977 with the aid of a computer. Later a simplified proof was given by Robertson, Sanders, Seymour, and Thomas. While the proof was simplified, it still relies on a computer in a significant way. In 1990, Kauffman proved that the Four Color Theorem is equivalent to the ability to find an assignment of the vectors \(\hat{i}, \hat{j}, \text{ and } \hat{k} \) to the variables of two associations of the product \(v_1 \times v_2 \times \cdots \times v_n \), such that the evaluations of both associations are equal and non-zero. Since elements of Thompson’s group \(F \) represent forms of the associative law, one can prove that the Four Color Theorem is equivalent to every element of \(F \) having an assignment of the vectors \(\hat{i}, \hat{j}, \text{ and } \hat{k} \) for which that associative law holds. In this talk, I will prove that every positive element of \(F \) has such an assignment. (Received September 21, 2011)