With the discovery that $\Xi(s)$, the companion function to the Riemann Zeta Function, is a spiral into the origin, never reaching there until infinite time, the Riemann Hypothesis (RH) is confirmed. Here $s = \sigma + it$ and $\Xi(s) = - G(s)\zeta(s)$ where the Riemann Transfer Function $G(s)$ is $\frac{1}{2}\Gamma(s/2)s(1-s)\pi^{-s/2}$. G is again a CCW spiral into the origin.

Next, using the "Skeleton Key Equation" given by Edwards on page 17, a perturbation development shows that there are no zeroes in the neighborhood of ANY known zero at t_n and $\sigma = 1/2$. Setting $\sigma = 1/2 + \delta$ and $t = t_n + \epsilon$, where the perturbations are to be small and real, a standard development through third order confirms the RH.

Last, an analytical and numerical study was conducted to determine $\text{Partial}(|\zeta|) \text{wrt } \sigma$. A set of 12 values of σ in the critical strip of $0 < \sigma < 1$ were examined at the first 30 minima for each of these σ values. In each case, the minima time t_m was computed to a minimum accuracy of 10 to the -7. In all 360 cases, the partial derivative was positive to the right of $\sigma = 1/2$ and negative to the left. (Received June 7, 2011)