An $m \times m$ board is called deficient if a 1×1 square is missing from anywhere on the board. An n-polyomino is a geometric shape formed by placing n equal squares edge to edge. With a fixed n, we prove that all deficient $m \times m$ boards can be tiled using n-polyominoes such that $m^2 - 1$ is divisible by n. We offer results for $n = 3$, $n = 4$, and $n = 5$, and we discuss our progress toward a generalization for all n. (Received September 22, 2011)