Let $G = \langle S \rangle$ be a group, and let Γ be its Cayley graph. Computing the diameter of Γ is a computationally hard problem which comes up in several contexts. Thus, it is useful to be able to compute bounds on the diameter of Cayley graphs. In Ganesan the case where S is a minimal set of transpositions which generate G is examined, and an algorithm to find an upper bound on the diameter of Γ without examining each permutation is exhibited. Expanding on this work, we give several new algorithms to compute upper bounds on the diameter of Γ, without examining individual elements of G. Some of the algorithms we give are computationally more efficient than Ganesan’s; one is computationally similar but produces much tighter bounds in many cases. (Received September 19, 2012)