Consider the following set of objects called filled circled brick tabloids of length n. Partition the set $\{1, \ldots, n\}$ such that each part has cardinality greater than or equal to 2. Construct bricks that have lengths equal to the cardinality of each part. Arrange the bricks in any order and fill each bricks with the numbers from its corresponding part in increasing order. For each brick circle any number except for the last number.

Here is an example of a filled circled brick tabloid of length 12.

\[
\begin{array}{cccccccccc}
1 & 4 & 5 & 7 & 10 & 11 & 12 & 3 & 6 & 2 & 8 & 9
\end{array}
\]

I will discuss why this set of objects has the same cardinality as the set of derangements of length n and I will show a bijection between the two sets. With this bijection, I will show that manipulating the filled circled brick tabloids in certain ways leads to derangements that have no consecutive pattern matches in any cycles. (Received September 19, 2012)