An r-inversion of a permutation $\sigma \in S_n$ is an inversion $(\sigma(i) > \sigma(j))$ such that $0 < j - i \leq r$. The generalized Eulerian number $a_{n,k}^r$ is the number of permutations in S_n with exactly k r-inversions. When $r = 1$, the generalized Eulerian numbers are the usual Eulerian numbers. De Mari and Shayman proved, using the hard Lefschetz theorem of algebraic geometry, that the sequence $(a_{n,k}^r)_k$ is unimodal. We discuss a q-analog of $a_{n,k}^r$, which involves a well-known Mahonian permutation statistic of Rawlings, and we present several conjectures on them including one on unimodality. (Received September 25, 2012)