Let G be a finite graph, k a positive integer, and d a non-negative integer. We consider a game in which two players, Alice and Bob, take turns coloring the vertices of G from a set of k colors. Every vertex with color α can be adjacent to at most d vertices already colored α. Alice wins if every vertex of G is eventually colored; otherwise Bob wins. This game is called the (d, k)-relaxed coloring game on G. We are interested in the least k such that Alice has a winning strategy for this game. This parameter is called the d-relaxed game chromatic number of G, and is denoted by $d\chi_g(G)$. In this talk, we discuss $d\chi_g(G)$ where G is a complete multipartite graph and $d \leq 2$, focusing on the case $d = 2$. (Received August 29, 2012)