The distinction between ordinary and supersingular elliptic curves can be generalized to (Jacobians of) curves of higher genus. If \(C \) is a curve defined over \(\overline{\mathbb{F}}_p \), its \(p \)-rank \(f \) measures the number of \(p \)-torsion points on its Jacobian or, equivalently, the length of the slope 0 segment of the Newton polygon of its \(L \)-function. For all \(g \geq 3 \) and all \(p \) and all \(0 \leq f \leq g \), Faber and Van der Geer proved that there exists a smooth curve of genus \(g \) over \(\overline{\mathbb{F}}_p \) with \(p \)-rank \(f \). A similar result for hyperelliptic curves was proven by Glass and Pries. In this talk, we discuss a new result about \(p \)-ranks of curves which are a cyclic cover of the projective line. The proof uses the method of degeneration to the boundary of a Hurwitz space. (Received September 24, 2012)