A numerical semigroup is an additive submonoid \(S \) of \(\mathbb{N}_0 \) with finite complement. The size of the complement is the genus of \(S \), \(g(S) \), and the sum of the elements of the complement minus \(g(S)(g(S) + 1)/2 \) is the weight of \(S \), \(w(S) \). We use the theory of modular forms, specifically weighted theta functions, to show that for all \(n \geq 6 \) there is a numerical semigroup \(S \) with smallest nonzero element 5 and \(w(S) + g(S) = n \).

This problem is motivated by the theory of \(t \)-core partitions, partitions with no hook lengths divisible by \(t \). A theorem of Granville and Ono says that for any \(t \geq 4 \) and \(n \geq 1 \) there exists a \(t \)-core partition of \(n \). Given a semigroup \(S \) with smallest nonzero element \(t \) we construct a \(t \)-core partition from it of size \(w(S) + g(S) \). We express this quantity as a quadratic function in \(t - 1 \) variables. For \(t = 5 \), we study this function in detail and prove a stronger version of this result: for every \(n \geq 6 \) there exists a 5-core partition of \(n \) coming from a semigroup.

For \(t = 5 \) this function leads to a quadratic form related to the \(A_4 \) lattice. The condition that the inputs come from a semigroup leads us to restrict to inputs in a certain cone. We then study integers represented by these vectors using weighted theta functions. (Received September 24, 2012)