Let $G = \mathbb{Z}/n\mathbb{Z}^*$ be the group of units of the ring $(\mathbb{Z}/n\mathbb{Z}, +n, \cdot n)$, and suppose that f is a polynomial with integer coefficients. We explore the orbits under f, and ask if any algebraic structure is contained in such orbits. In particular:

When is the orbit of 1 under f a cycle? If it is a cycle, do its elements form a subgroup of G? In this case, what algebraic structure is seen in this orbit and other orbits? When f is a product of more than one cycle, the orbit of 1 may coincide with a (proper) subgroup H of G. When this occurs, there is a natural, yet varied correspondence between the cosets of H and the cycles of f. And finally, when we form a conjugate of such an f by another bijection g from G to G, the algebraic structure of the orbit of 1 under f is sometimes altered. (Received August 14, 2012)