Carl B. Pomerance (carlp@math.dartmouth.edu), 6188 Kemeny Hall, Dartmouth College, Hanover, NH 03755, and Hee-Sung Yang* (hee-sung.yang.12@dartmouth.edu), 6188 Kemeny Hall, Dartmouth College, Hanover, NH 03755. Variant of a theorem of Erdős on the sum-of-proper-divisors function.

In 1973, Erdős proved that the upper density of the set \(s(\mathbb{N}) \) is less than 1, where \(s(n) := \sigma(n) - n \) is the sum of the proper divisors of \(n \). We investigate the analogous question where \(\sigma \) is replaced with similar divisor functions, such as the sum-of-unitary-divisors function \(\sigma^* \) (which sums those divisors \(d \) of \(n \) co-prime to \(n/d \)). We use a modified version of Erdős’s original argument from the aforementioned work to prove that the upper density of \(s^*(\mathbb{N}) \) is less than 1, thereby showing that there are infinitely many integers not in the image of \(s^* \). In one of the cases, the theory of covering congruences makes a surprising appearance. We also present an algorithm that allows us to enumerate the total number of integers not in \(s^*(\mathbb{N}) \) up to \(10^8 \) (the previous known result, by David Wilson in 2001, was up to \(10^5 \)) and conjecture the density of the set \(s^*(\mathbb{N}) \) based on this result. (Received July 19, 2012)