1086-13-1668

Olgur Celikbas^{*} (celikbas0@missouri.edu), Mathematics Department, 323 Mathematical Sciences Bldg., University of Missouri-Columbia, Columbia, MO 65211, and Srikanth Iyengar (s.b.iyengar@unl.edu), Greg Piepmeyer (ggpz95@mail.missouri.edu) and Roger Wiegand (rwiegand@unl.edu). An application to the vanishing of $\eta(-,-)$ pairing. Preliminary report.

Let R be a commutative Noetherian local complete intersection ring of codimension c, and let M and N be nonzero finitely generated R-modules such that $\operatorname{Tor}_{\geq 0}^{R}(M, N)$ has finite length. Assume $c \geq 2$ and that $\eta_{c}^{R}(M, N) = 0$ (Here $\eta(-, -)$) is a generalized version of Hochster's $\theta(-, -)$ pairing, initially defined and studied by Hailong Dao.) We give various criteria, in terms of the depth properties of M, N, and $M \otimes_{R} N$, that force the vanishing of $\operatorname{Tor}_{>0}^{R}(M, N)$. Applying our result to a class of complete intersections over which $\eta(-, -) = 0$, we obtain a new connection between the torsion in the tensor product of modules and the vanishing of Tor. (Received September 24, 2012)