A cyclic p-gonal Riemann surface X is a surface admitting a regular p-sheeted morphism on the projective line, the p-gonal morphism. A Riemann surface is real if it admits an anticonformal involution, a symmetry, as an automorphism. Real p-gonal surfaces, with p prime, are defined by equations of the form $y^p = Q(x)$, where $Q(x)$ is a polynomial in x. A surface is real p-gonal if the p-gonal morphism commutes with the symmetry.

We calculate all the automorphisms groups of cyclic p-gonal and real p-gonal Riemann surfaces. This is a genralization of the work of Bujalance et al. for hyperelliptic and trigonal Riemann surfaces (Received September 03, 2012)