Differential cohomology theories of smooth manifolds geometrically refine classical cohomology theories by combining differential forms and integral cocycles to obtain local geometric and global topological information. Whereas the topological K-theory $K^0(M)$ is the ring of isomorphism classes of vector bundles, the differential K-theory $\hat{K}^0(M)$ consists of isomorphism classes of vector bundles with connection. When a smooth manifold M carries a smooth action of the circle group \mathbb{T}, equivariant K-theory, the K-theory of \mathbb{T}-equivariant vector bundles, captures equivariant topological information. We recall the Freed-Lott construction of differential K-theory and present a construction of differential \mathbb{T}-equivariant K-theory which captures equivariant geometric and topological information at once. (Received September 25, 2012)