Symmetric spaces have been studied for their role in Lie groups and algebraic groups. They can be defined as the homogeneous spaces G/K where G is a reductive algebraic group and K maximal compact subgroup, which is also the fixed point group of an involution. Generalizations of symmetric spaces arise in many areas and are often called symmetric k-varieties. A symmetric k-variety is defined as the quotient G_k/H_k, where G is an algebraic group defined over a field k, $H = G^\theta$ is the fixed point group of a k-involution θ of G and G_k and H_k are the k-rational points of G and H. For every isomorphy class of k-involutions we get an isomorphy class of symmetric k-varieties. These have been classified for some algebraic groups of types A, B, C, and D. In this talk we discuss some recent results about the classification of k-involutions for exceptional groups. (Received September 22, 2012)