Using Howe’s reductive dual pair philosophy, we study the branching multiplicity spaces for the irreducible representations of the complex general linear group GL_n under its restriction to GL_{n-2}. These spaces admit hidden symmetries extending the natural GL_2-action, namely, the Yangian $Y(gl_2)$ and the $(n - 1)$-fold product of sl_2’s. We connect the combinatorial description of the branching multiplicity spaces in terms of Gelfand–Tsetlin patterns with explicit formulas for differential operators realizing the hidden symmetries. (Received August 17, 2012)