This talk is based on joint work with Arlo Caine. There is a well-known real algebraic Bruhat-Poisson structure π_{BP} on the flag variety G/B of a complex reductive group, whose symplectic leaves are Schubert cells. The Bruhat-Poisson structure is not invariant under the action of a maximal torus T of the Borel subgroup B, and we show that an appropriate limit of the torus action on the Bruhat-Poisson structure converges, and gives a torus invariant real algebraic Poisson structure on G/B whose symplectic leaves are intersections of Schubert cells with opposite Schubert cells. (Received September 21, 2012)