1086-22-2538

Jennifer R. Daniel* (jennifer.daniel@lamar.edu), Department of Mathematics, Campus Box 10047, Lamar University, Beaumont, TX 77710, and Alys M. Rodriguez. Using a (σ, θ) -basis for the KAK decomposition in Quantum Computation.

In quantum computation, new states evolve from initial states under a series of unitary transformations. The set of all unitary transformations form a Lie group called the unitary group $U(2^n)$. Without loss of generality, we only consider those unitary transformations in $SU(2^n)$ the Lie group of unitary matrices with determinant one. Decomposing arbitrary unitary transformations into the product of simple quantum gates is crucial to understanding the design of a quantum computer. One method of such decomposition utilizes consecutive Cartan decompositions into the ± 1 -eigenspaces \mathfrak{k} and \mathfrak{p} of an involutive automorphism θ of the Lie algebra $\mathfrak{su}(2^n)$. The Cartan decomposition induces a decomposition on the group level $SU(2^n) = KAK$, where $H = exp(\mathfrak{a})$ for a maximal toral subalgebra \mathfrak{a} of \mathfrak{p} . Root space decomposition is utilized as a means of establishing a basis for \mathfrak{k} and \mathfrak{p} in the KAK decomposition. Once a basis is established, we can obtain a decomposition of any $U \in SU(2^n)$ into one qubit and controlled-not gates by exponentiating. (Received September 25, 2012)