We study the dual groups of a collection of metrizable group topologies for \mathbb{R}^n that are weaker than the usual topology. These topologies are defined by choosing a sequence $\{v_i\}$ in \mathbb{R}^n and specifying the approximate rate at which it converges to zero. If $\{v_i\}$ goes to infinity sufficiently fast in the usual topology, then such a group topology T always exists. We prove that the group of continuous homomorphisms of (\mathbb{R}^n, T) into the circle group is an uncountable subgroup of \mathbb{R}^n that is dense in \mathbb{R}^n in the usual topology, and its complement is also uncountable and dense. Since neither (\mathbb{R}^n, T) nor its completion is locally compact, classical duality theory does not apply. (Received September 25, 2012)