A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be an \textit{honorary Baire two function} if there exists a Baire one function $g : \mathbb{R}^n \rightarrow \mathbb{R}$ which agrees with f on a co-countable set. A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is \textit{substantially Darboux-like} if for each open connected set U in \mathbb{R}^n and for each $U \subset S \subset \overline{U}$ (the closure of U), $f(S)$ is an interval. On \mathbb{R}, the classes of Darboux and substantially Darboux-like functions are identical. Results regarding the closure of the space of substantially Darboux-like honorary Baire two functions are discussed. (Received September 25, 2012)