We establish an $\epsilon$-regularity criterion for any weak solution $(u, d)$ to the nematic liquid crystal flow such that $(u, \nabla d) \in L^p_t L^q_x$ for some $p \geq 2$ and $q \geq n$ satisfying the condition $\frac{n}{q} + \frac{2}{p} = 1$. As consequences, we prove the interior smoothness of any such a solution when $p > 2$ and $q > n$. We also show that uniqueness holds for the class of weak solutions $(u, d)$ the Cauchy problem of the nematic liquid crystal flow that satisfy $(u, \nabla d) \in L^p_t L^q_x$ for some $p > 2$ and $q > n$ satisfying $\frac{n}{q} + \frac{2}{p} = 1$. (Received September 24, 2012)