Consider the problem

\[-\Delta u = au^+ - bu^- + g(u) + h, \quad \text{in } \Omega\]
\[u|_{\partial \Omega} = 0,\]

where \(\Omega\) is a smooth bounded domain, \(g(u)\) is a continuous function satisfying a sublinear growth condition, \(h \in L^2(\Omega)\), and \((a, b)\) is a pair of real numbers on the well-known Fucik Spectrum, \(\Sigma\). Building upon a recent variational characterization of \(\Sigma\) due to Castro and Chang, we prove the existence of at least one weak solution subject to a generalized Landesman-Lazer condition. The proof applies linking theory and characterizes the solution as a saddle point. We also indicate how our results generalize to a broader class of quasilinear problems. (Received September 25, 2012)