We consider an elliptic problem of the form

\[-\Delta_p u = \lambda f(u) \quad \text{in} \quad \Omega \]
\[u > 0 \quad \text{in} \quad \Omega \]
\[u = 0 \quad \text{on} \quad \partial \Omega ,\]

where \(\lambda > 0 \) is a parameter, \(\Omega \) is a strictly convex bounded domain in \(\mathbb{R}^N; N \geq 2 \) with \(C^2 \) boundary \(\partial \Omega \) and \(1 < p \leq 2 \).

The nonlinearity \(f : [0, \infty) \to \mathbb{R} \) is a continuous function that is semipositone \(f(0) < 0 \) and \(p \)-superlinear at infinity. We use degree theory combined with re-scaling argument and uniform \(L^\infty \) apriori estimate to prove that the problem has a positive solution for \(\lambda \) small. We extend this result to systems case as well. (Received September 25, 2012)