Consider a reproducing kernel Hilbert space $H(K)$ on a bounded Reinhardt domain $\Omega \subset \mathbb{C}^2$, with kernel of the form $K(z, w) = \sum_{m \in \mathbb{Z}^2_+} \frac{z^m w^m}{A_m}$. Assume that the coordinate functions z_1 and z_2 are multipliers on $H(K)$. Assume further that $A_{m_1+1, m_2+1} = A_{1,1}\gamma_{m_1+m_2}[\alpha]$, where α is a bounded sequence of positive numbers and $\{\gamma_k\}_{k \geq 0}$ is the associated sequence of moments; that is, $\gamma_0[\alpha] := 1$, $\gamma_{k+1}[\alpha] := \alpha_k^2\gamma_k[\alpha]$ ($k \geq 0$).

The pair $M_z \equiv (M_{z_1}, M_{z_2})$ is thus a 2-variable weighted shift whose restriction to the invariant subspace $z_1 z_2 H(K)$ can be regarded as a 2-variable embedding of the unilateral weighted shift W_α. In joint work with S.H. Lee and J. Yoon, we study (joint) spectral and structural properties of M_z acting on $H(K)$. For instance, we prove that M_z is subnormal if and only if some integer power $M_{z_1}^{k_1} M_{z_2}^{k_2}$ is subnormal. (Received September 23, 2012)