Representation of K-Isotropic Harmonizable Random Fields and Completely Bounded Multilinear Forms.

Let K be a compact group acting as a transformation group via automorphisms on the locally compact group G. Then K acts in the canonical way on unitary representations of G, and thus on both $C^*(G)$ and its dual, $B(G)$. More generally, if we let K act diagonally on $G \times \cdots \times G$, then this induces an action of K on the Haagerup tensor product $C^*(G) \otimes_h \cdots \otimes_h C^*(G)$ and its dual space. A functional u in this dual space is called K-isotropic if $u^\kappa = u \forall \kappa \in K$, where u^κ denotes the image of u under the action of κ. When u is completely positive, a representation of the Fourier transform of u, as a function on $G \times \cdots \times G$, can be formulated in terms of K-spherical functions on G. When $K = SO(d)$, and K acts on $\mathbb{R}^d \times \mathbb{R}^d$, this leads to a representation theorem for isotropic, weakly harmonizable processes. (Received September 24, 2012)