Stephanie Edwards* (sedwards@hope.edu), 27 Graves Place, Department of Mathematics,
Holland, MI 49423. Extreme curvature of polynomials and level sets. Preliminary report.

Let F be a real polynomial of degree N. Then the curvature of F is defined to be

$$\kappa = \frac{F''}{(1 + (F')^2)^{\frac{3}{2}}}.$$

Determining the maximum number of zeros of κ is an easy problem: since the zeros of κ are the zeros of F'', the curvature of F is 0 at most $N - 2$ times. A much more intriguing problem is to determine the maximum number of relative extreme values for the function κ, or equivalently, determine the maximum number of zeros of κ'. In 2004 it was shown that if all the zeros of F'' are real, then F has at most $N - 1$ points of extreme curvature. We use level sets and auxiliary functions to study the zeros of the derivatives of these functions. We provide a partial solution to this problem, showing that F has at most $N - 1$ points of extreme curvature when F has only simple zeros and when certain geometrical conditions hold. (Received September 06, 2012)