Today we use the Cartesian coordinate system. The Coxeter polytype polyhedrons describe polyhedrons using 6 dimensions using Cartesian coordinates of (x,y,z) cubic based algebra. We describe the triangular planes of the tetrahedron, octahedron and icosahedron. This Paper compares and presents papers related to triangular planes of triangular polyhedrons and the square planes of polyhedrons including the cube using a simplified Euler foundation based on the algebra of(r,s,t,u,v,w). The Pythagorean theorem is squared and triangulated as a study to develop and compare square graphic space to triangular graphic space. Fermat’s and Beal’s Conjecture as number theory are connected to graph theory in this document. Cartesian Philosophy of (x, y,z) axes of symmetry related to (r,s,t,u,v,w) represented as graphic planes. Thus a form of dual coordinate system is formed which connects the square planes of the 3-Dimensional Coordinate system and (x,y,z) with the triangular planes of the 6-dimensional Coordinate system (r,s,t,u,v,w) edges of Six Dimensional Tetrahedral Theory references(based on 6 edges of tetrahedron). The volume of space theory is connected between Beal Conjecture number theory and 6 dimensional volume of the tetrahedron in Six Dimensional Space Theory. (Received September 17, 2013)