Colored Saturation Problems.

Let \mathcal{F} be a family of t-edge-colored graphs. An edge-colored graph G is (\mathcal{F}, t)-saturated if G contains no member of \mathcal{F} as a subgraph, but the addition of any edge $e \in \mathcal{G}$ in any color $i \in [t]$ creates a copy of some $F \in \mathcal{F}$.

In this talk, we will discuss some results on (\mathcal{F}, t)-saturated graphs of fixed order with minimum size, in particular focusing on the case where \mathcal{F} consists of all possible rainbow colorings of a given graph H. We will also share some results on a related problem inspired by Hanson and Toft’s 1987 conjecture on the traditional (uncolored) saturation number for $(K_{t_1}, \ldots, K_{t_k})$-Ramsey-minimal graphs.

This work is joint with a number of coauthors. (Received September 13, 2013)