Riemannian orbifolds are a slight generalization of Riemannian manifolds. Instead of being locally diffeomorphic to \mathbb{R}^n, Riemannian orbifolds are locally diffeomorphic to \mathbb{R}^n modulo the isometric action of a finite group. Recently, a number of authors have examined orbifolds from the perspective of inverse spectral geometry. In light of the strong connection between spectral geometry and spectral graph theory, our project defines a graph theoretic parallel of an orbifold, called an orbigraph, and obtains spectral results about orbigraphs. The spectrum of the adjacency matrix of a k-orbigraph yields bounds on the number of singular (non k-star) vertices present in the orbigraph. The reversibility (as in Markov chains) of an orbigraph determines if it can be obtained as the quotient of a finite k-regular graph. Both the definition of an orbigraph and our results about them are new. (Received September 15, 2013)