A sequence of nonnegative integers \(\pi = (d_1, d_2, ..., d_n) \) is graphic if there is a (simple) graph \(G \) with degree sequence \(\pi \). In this case, \(G \) is said to realize or be a realization of \(\pi \). Given a graph \(H \), a graphic sequence \(\pi \) is potentially \(H \)-graphic if there is some realization of \(\pi \) that contains \(H \) as a subgraph. In 1991, Erdős, Jacobson and Lehel posed the following, which can be viewed as a degree sequence analogue to the classical Turán problem, “Determine the minimum integer \(\sigma(H, n) \) such that every \(n \)-term graphic sequence with sum at least \(\sigma(H, n) \) is potentially \(H \)-graphic.” The exact value of \(\sigma(H, n) \) has been determined for a number of specific classes of graphs (including cliques, cycles, complete bigraphs and others). In this talk, we will discuss the extension of this potential function, \(\sigma(H, n) \), where \(H \) is a (loopless) multi-graph. (Received September 17, 2013)