Given a polynomial of the form \(f(x, z) = g(z) + h(x) \), let \(f^{(0)}(x) = 0 \) and \(f^{(n)}(x) = g(f^{(n-1)}) + h(x) \) for \(n \geq 1 \). Set \(f_\infty(x) = \lim_{n \to \infty} f^{(n)}(x) \). We give conditions on \(g(z) \) and \(h(x) \) so that the power series \(f_\infty(x) = \sum_{k=0}^{\infty} a_k x^k \) exists, and provide combinatorial interpretations of the coefficients \(a_k \) in terms of polygonal partitions. In particular, we provide examples of \(g(z) \) and \(h(x) \) such that the nonzero coefficients of \(f_\infty(x) \) are the Catalan numbers \(C_k = \frac{1}{k+1} \binom{2k}{k} \), the multivariate Fuss-Catalan numbers \(C_k^{(d)} = \frac{1}{(d-1)k+1} \binom{dk}{k} \), and a “non-homogeneous” generalization of the Fuss-Catalan numbers. (Received September 17, 2013)