Consider a permutation \(\pi \) of length \(n \); we say that a permutation \(\pi' \) of length \(n + 1 \) covers this permutation if \(\pi \) is contained as a subpattern of \(\pi' \). Existing research gives us bounds on the order \(m \) of a minimal set of permutations of size \(n + 1 \) necessary to cover all permutations of size \(n \). We extend this research to the general case where \(\pi' \) is of length \(n + k \) for a natural number \(k \) and present bounds on the order of a minimal set of permutations necessary to cover \(\lambda \geq 1 \) times every permutation of size \(n \). We also present preliminary results on the problem of embedding permutations of length \(n \) in permutations of length \(n + 1 \). (Received August 29, 2013)