A graph H is said to divide a graph G if G has an H-decomposition. A decomposition $\{H_1, H_2, \ldots, H_k, R\}$ of G is called an H-maximal k-decomposition if $H_i \cong H$ for $1 \leq i \leq k$ and R contains no subgraph isomorphic to H. Let $\text{Min}(G,H)$ and $\text{Max}(G,H)$ be the minimum and maximum k, respectively, for which G has an H-maximal k-decomposition. A graph H without isolated vertices is said to possess the intermediate decomposition property if for each connected graph G and each integer k with $\text{Min}(G,H) \leq k \leq \text{Max}(G,H)$, there exists an H-maximal k-decomposition of G. Results and questions are presented in this area of research. (Received September 05, 2013)