One can take advantage of results associated with the genus of curves to explain Hilbert’s Irreducibility Theorem in the form: if \(f(x, y) \) is an irreducible polynomial in \(\mathbb{Z}[x,y] \) of degree at least 1 in \(x \), then there are infinitely many integers \(y_0 \in \mathbb{Z} \) such that \(f(x, y_0) \) is irreducible over \(\mathbb{Q} \). This explanation will be elaborated on or the speaker may decide to talk instead on a connection that Linnik’s theorem, on the smallest prime in an arithmetic progression, has with estimating the smallest \(y_0 \in \mathbb{Z}^+ \) such that \(f(x) + y_0g(x) \) is irreducible in \(\mathbb{Z}[x] \), where \(f(x) \) and \(g(x) \) are fixed relatively prime polynomials in \(\mathbb{Z}[x] \). Or then again, maybe the speaker will discuss both topics. (Received September 15, 2013)