A classical theorem in number theory states that a positive integer z can be written as the sum of two squares if and only if all prime factors q of z with $q \equiv 3 \pmod{4}$ have even exponent in the prime factorization of z. One can consider a minor variation of this theorem by not allowing the use of zero as a summand in the representation of z as the sum of two squares. Viewing each of these questions in \mathbb{Z}_n, the ring of integers modulo n, we investigate which integers $n \geq 2$ are such that every $z \in \mathbb{Z}_n$ can be written as the sum of two squares in \mathbb{Z}_n. (Received September 11, 2013)