Let $\mathcal{A} = \bigcup_{i=1}^{r} C_i \subseteq \mathbb{P}^2$ be a collection of smooth plane curves, such that each singular point is quasihomogeneous. We prove that if C is a smooth curve such that each singular point of $\mathcal{A} \cup C$ is also quasihomogeneous, then there is an elementary modification of rank two bundles, which relates the $\mathcal{O}_{\mathbb{P}^2}$–module $\text{Der}(\log \mathcal{A})$ of vector fields on \mathbb{P}^2 tangent to \mathcal{A} to the module $\text{Der}(\log \mathcal{A} \cup C)$. This yields an inductive tool for studying the splitting of the bundles $\text{Der}(\log \mathcal{A})$ and $\text{Der}(\log \mathcal{A} \cup C)$, depending on the geometry of the divisor $\mathcal{A}|_C$ on C. (Received September 13, 2013)