Brill-Noether theory studies the existence and deformations of curves in projective spaces; its basic object of study is $W_{d,g}^r$, the moduli space of smooth genus g curves with a choice of degree d line bundle having at least $(r+1)$ independent global sections. The Brill-Noether theorem asserts that the map $W_{d,g}^r \to M_g$ is surjective with general fiber dimension given by the number $\rho = g - (r+1)(g-d+r)$, under the hypothesis that $0 \leq \rho \leq g$. One may naturally conjecture that for $\rho < 0$, this map is generically finite onto a subvariety of codimension $-\rho$ in M_g. This conjecture fails in general, but seemingly only when $-\rho$ is large compared to g. I discuss a proof that this conjecture does hold for at least one irreducible component of $W_{d,g}^r$, under the hypothesis that $0 < -\rho \leq \frac{r}{r+2} g - 3r + 3$. (Received September 16, 2013)