Nathaniel F Bushek* (bushek@unc.edu), 10 Mt Bolus Rd, Chapel Hill, NC 27514. Hitchin’s conjecture for simply-laced Lie algebras implies that for any simple Lie algebra.

Let \mathfrak{g} be any simple Lie algebra over \mathbb{C}. Recall there exists a principal TDS embedding of \mathfrak{sl}_2 into \mathfrak{g} passing through a principal nilpotent of \mathfrak{g}. $\wedge(\mathfrak{g}^*)^\theta$ is generated by primitive elements $\omega_1, \ldots, \omega_\ell$, where ℓ is the rank of \mathfrak{g}. N. Hitchin conjectured that for any primitive element $\omega \in \wedge^d(\mathfrak{g}^*)^\theta$, there exists an irreducible \mathfrak{sl}_2-submodule V_ω of dimension d such that ω is non-zero on $\wedge^d(V_\omega)$. The main motivation for Hitchin behind this conjecture lies in its connection with the study of polyvector fields on the moduli space $M_G(\Sigma)$ of semistable principal G-bundles on a smooth projective curve Σ of any genus $g > 2$. We prove that the validity of this conjecture for simple simply-laced Lie algebras implies its validity for any simple Lie algebra. Let G be a connected, simply-connected simple simply-laced algebraic group and K the fixed subgroup of a diagram automorphism of G. We show that the restriction map of representation rings, $R(G) \to R(K)$, is surjective. Our proof of the reduction of Hitchin’s conjecture depends on this surjectivity. (Received September 18, 2013)