The Oort conjecture (proven by joint work of the speaker, Stefan Wewers, and Florian Pop) states that any G-Galois branched cover of smooth projective curves can be lifted from characteristic p to characteristic zero, as long as G is cyclic. We call a finite group with the above lifting property an \textit{Oort group} (so cyclic groups are Oort groups). If G is instead a group of the form $\mathbb{Z}/p^n \rtimes \mathbb{Z}/m$ with $p \nmid m$ and $m > 1$, then not every G-Galois branched cover lifts to characteristic zero, and there is a known obstruction to lifting called the \textit{Bertin obstruction}. I conjecture that the Bertin obstruction is the only obstruction in this case. From this, it would follow that the dihedral groups of order $2p^n$ for odd p are Oort groups for every n (this is known for $n = 1$, by work of Irene Bouw and Stefan Wewers). We present progress toward this more general conjecture, including the first explicit known examples of liftable G-covers where G is dihedral of order $2p^n$, $p > 2$, $n \geq 2$, and the cover has a totally ramified point. (Received August 24, 2013)