Within a well-known class of algebras, we study a connection between noncommutative homological algebra and combinatorial topology. To a finite ranked poset Γ we associate a finite-dimensional quadratic graded algebra R_{Γ}. Assuming Γ satisfies a combinatorial condition known as uniform, R_{Γ} is the quadratic dual of the associated graded splitting algebra A'_{Γ}. Gelfand, Retakh, Serconek and Wilson first introduced splitting algebras and a subset of these authors showed that a splitting algebra A_{Γ} is quadratic if Γ is uniform. Given a uniform Γ, we then ask a standard question in noncommutative homological algebra: Does A_{Γ} satisfy the Koszul property? Applying standard techniques and assuming the uniform hypothesis, it is known that if R_{Γ} is Koszul, then so is A_{Γ}. We therefore study Koszulity of R_{Γ} in search of necessary and sufficient conditions on Γ. We have found that the Koszulity of R_{Γ} is related to a combinatorial topology property of Γ known as Cohen-Macaulay. This property is ubiquitous and it often connects the fields of algebra and topology. We prove: Γ is Cohen-Macaulay if and only if Γ is uniform and R_{Γ} is Koszul. (Received September 16, 2013)