In a 1963 paper I.D. MacDonald gave an example of a group in which the cyclic commutator subgroup is not generated by a commutator and he gives sufficient conditions on the group G such that its cyclic commutator subgroup is generated by a commutator.

The question arises, what is the situation for other words in case the associated word subgroup is cyclic, in particular the word x^n, n a positive integer. For n a positive integer, we establish sufficient conditions such that $G^n = \langle g^n | g \in G \rangle$ is generated by an n-th power in case G^n is cyclic and give examples of groups G, where G^n is cyclic but not generated by the n-th power of an element. (Received September 16, 2013)