Building Toward a “Twisted” Theta Correspondence. Preliminary report.

The local theta lift over a p-adic field takes a pair of reductive groups $G := G(F)$ and $G' = G'(F)$ (with F a p-adic field) along with a symplectic vector space V over F for which $G \times G' \subset H := \text{Sp}(V)$. There exists covering groups \tilde{G}, \tilde{G}', and \tilde{H} and a representation ω of \tilde{H} so that its restriction to $\tilde{G} \times \tilde{G}'$ decomposes “nicely”. Representations $\pi \boxtimes \pi'$ appearing in this restriction are called theta lifts of each other.

In our talk, we discuss some results regarding theta lifts when G is a symplectic group and G' is an orthogonal group for an odd-dimensional orthogonal space. Namely, we aim to sketch a proof of the famous theta dichotomy conjecture. The proof relies heavily on the Rankin-Selberg-type doubling integral of Piatetski-Shapiro and Rallis. From there, We will introduce on-going research that defines the “twisted” doubling integral and attempt to compute their L-functions as well as interpret them in the theta correspondence framework. (Received September 13, 2013)