We consider the eigenvalues of the magnetic Schrödinger operator on a quantum graph as functions of the magnetic potential. We establish a simple relation between the Morse index of the magnetic eigenvalue and the number of zeros of the corresponding non-magnetic eigenfunction. This highlights an intricate relationship between zeros of an eigenfunction and the stability of the corresponding eigenvalue under magnetic perturbation.

In particular, let \(\{\sigma_j\}_{j=1}^\beta \) be a set of generators of the fundamental group of a quantum graph \(\Gamma \). The eigenvalues of the magnetic Schrödinger operator may be considered as functions of the magnetic flux \(\alpha = (\alpha_1, \ldots, \alpha_\beta) \) where \(A(x) \) is the magnetic potential on \(\Gamma \) and

\[
\alpha_i = \oint_{\sigma_j} A(x) \, dx.
\]

Let \(\psi \) be the \(n \)-th eigenfunction of the ordinary Schrödinger operator (no magnetic potential) and assume that \(\psi \) is non-zero on the vertices of \(\Gamma \). Let \(\phi \) denote the number of internal zeros of \(\psi \) on \(\Gamma \). We demonstrate that \((0, \ldots, 0) \) is a non-degenerate critical point of \(\lambda_n(\alpha) \) with Morse index equal to the nodal surplus of \(\psi \), which is \(\phi - (n - 1) \). (Received September 13, 2013)