We consider the problem

\[-\Delta_p u = \frac{au^{p-1} - bu^{\gamma-1} - c}{u^\alpha}, \quad x \in \Omega\]

\[u = 0, \quad x \in \partial\Omega\]

where \(\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)\), \(p > 1\), \(\Omega\) is a bounded domain with smooth boundary in \(\mathbb{R}^n\), \(a > 0\), \(b > 0\), \(c \geq 0\), \(\gamma > p\) and \(\alpha \in (0, 1)\). Given \(a, b, \gamma,\) and \(\alpha\), we establish the existence of a positive solution for small values of \(c\). (Received September 17, 2013)