The use of fractional differential and integral equations in Mathematical models has taken a great impetus in the recent years. And, very often the exact solution to these equations is not available by analytic methods. Then one needs to go for the numerical methods for obtaining the approximate solution. In this talk I would like to enlighten a numerical method to solve a fractional Fredholm integro-differential equation of second kind using wavelet. The wavelet basis finally reduces the Fredholm integro-differential equation of second kind in the system of equations which can be solved to get the approximate solutions. The test examples are taken to show the robustness of the method. (Received September 16, 2013)