Trieu L. Le* (trieu.le2@utoledo.edu). Weighted composition operators on the Drury–Arveson space.

For a cardinal d, the Drury–Arveson space H^2_d can be identified as a reproducing kernel Hilbert space with kernel $K(z, w) = (1 - \langle z, w \rangle)^{-1}$, where z, w belong to the unit ball \mathbb{B}_d of a d-dimensional Hilbert space. Let f be in H^2_d and φ be a holomorphic self-map of \mathbb{B}_d. The weighted composition operator $W_{f, \varphi}$ is defined on H^2_d by $W_{f, \varphi}h = f \cdot (h \circ \varphi)$. Researchers have been interested in studying how the operator theoretic properties of $W_{f, \varphi}$ affect the function theoretic properties of f, φ and vice versa. In this talk we shall discuss when the adjoint operator $W_{f, \varphi}^*$ is a weighted composition operator, or the inverse of a weighted composition operator. Consequently, we provide characterizations for $W_{f, \varphi}$ to be self-adjoint or unitary. (Received August 29, 2013)