A common approach to studying an ill-posed problem involves the regularization of the problem in which a known solution is approximated by the solution of a closely-defined well-posed problem. This method has been studied in recent literature for several versions of the abstract Cauchy problem $\frac{du}{dt} = Au, 0 \leq t < T, u(0)$ where A is an operator in a Banach space, and with applications to a wide class of partial differential equations including the backward heat equation. In this presentation, we will review recent results proved by the author concerning the regularization of nonautonomous ill-posed problems where the operator A is replaced by the nonconstant operator $A(t)$. We will highlight the differences in the structure of the regularization depending on the properties of the operators $A(t)$ and also depending on the type of problem being considered such as inhomogeneous, or semi-linear, for example. Finally, an introduction to quasi-linear equations will be given with a discussion on how regularization may be extended to such problems. (Received September 11, 2013)