1. $\mu \otimes \mu$ commutes with R

2. $Sp_2(R \circ (\mu \otimes \mu)) = \alpha \beta \mu$ and $Sp_2(R^{-1} \circ (\mu \otimes \mu)) = \alpha^{-1} \beta \mu$

Together they define a braid invariant $T_s(\sigma) = \alpha^{-w(\sigma)}\beta^{-n}Sp(b_R(\sigma) \circ \mu \otimes n)$, where $w(\sigma)$ is the writhe of the braid, n is the order of the braid and Sp is the standard trace. Explicit constructions are given for the EYB-operators. This paper explicitly demonstrates explicitly that $T_s(\sigma)$ with the given constructions is yield the same polynomial as the construction of the Jones polynomial through Kauffman brackets. (Received September 17, 2013)