Susan M. Abernathy* (sabern1@tigers.lsu.edu). The Kauffman bracket ideal for genus-1 tangles.

Given a compact oriented 3-manifold M in S^3 with boundary, an $(M, 2n)$-tangle T is a 1-manifold with $2n$ boundary components properly embedded in M. We say that T embeds in a link L in S^3 if T can be completed to L by a 1-manifold with $2n$ boundary components exterior to M. The link L is called a closure of T. We define the Kauffman bracket ideal of T to be the ideal I_T of $\mathbb{Z}[A^\pm 1]$ generated by the reduced Kauffman bracket polynomials of all closures of T. If this ideal is non-trivial, then T does not embed in the unknot. We give an algorithm for computing a finite list of generators for the Kauffman bracket ideal of any $(S^1 \times D^2, 2)$-tangle, also called a genus-1 tangle, and give an example of a genus-1 tangle with non-trivial Kauffman bracket ideal. Furthermore, we show that if a single-component genus-1 tangle T' can be obtained as the partial closure of a $(B^3, 4)$-tangle T, then $I_T = I_{T'}$. (Received September 12, 2013)