Heron’s formula, giving the area of a triangle in terms of the lengths of its sides, is one of the great, peculiar results of plane geometry. It is thus to be expected that, over the years, there have been multiple demonstrations of this remarkable formula.

Here, I consider four such proofs. Heron’s original was a clever if convoluted exercise in Euclidean geometry. Centuries later, Isaac Newton gave a demonstration whose heavy lifting was done by algebra rather than geometry. Leonhard Euler’s proof was geometric and exhibited his characteristic flair. Then, in an unsolicited 1990 letter, someone named Barney Oliver shared with me an elegant trigonometric argument where the symmetry of the formula was mirrored by the symmetry of the proof itself. (Received April 09, 2013)